CHEMICAL SCIENCES

This Test Booklet will contain 145 (20 Part `A'+50 Part `B+75 Part 'C') Multiple Choice Questions (MCQs). Candidates will be required to answer 15 in part 'A', 35 in Part 'B' and 25 questions in Parts C respectively (No. of question to attempt may vary from exam to exam). In case any candidate answers more than 15, 35 and 25 questions in Parts A, B and C respectively only first 15, 35 and 25 questions in Parts A, B and C respectively will be evaluated. Questions in Parts 'A' and 'B' carry two marks each and Part 'C' questions carry four marks each. There will be negative marking @25% for each wrong answer. Below each question, four alternatives or responses are given. Only one of these alternatives is the 'CORRECT' answer to the question.

MODEL QUESTION PAPER

PART A

May be viewed under heading "General Science"

PART B

- **21**. [CoCl₄]²⁻ shows a deep blue colour because of
 - 1. metal to ligand charge transfer transition
 - 2. ligand to metal charge transfer transition
 - 3. spin allowed and Laporte forbidden d-d transition
 - 4. spin allowed and Laporte allowed d-d transition
- 22. The violet colour of iodine vapour is due to
 - 1. $n-\pi^*$ transition
 - 2. π - π * transition
 - 3. $n-\sigma^*$ transition
 - 4. $\pi^*-\sigma^*$ transition

23.	Choose the correct statement	among th	ne following
-----	------------------------------	----------	--------------

- 1. diamond has lower thermal and electrical conductivities compared to graphite
- 2. diamond has similar thermal and electrical conductivities compared to graphite
- 3. diamond has higher thermal conductivity but lower electrical conductivity compared to graphite
- 4. diamond has the same thermal but lower electrical conductivity compared to graphite

24.	Which of	of the	following	; is a	nido-borane	?
-----	----------	--------	-----------	--------	-------------	---

- 1. B_4H_{10}
- B_5H_9
- 3. $[B_6H_6]^{2-}$
- 4. B_5H_{11}

25. The oxidation number of sulphur in dithionite $[S_2O_4]^{2-}$ and dithionate $[S_2O_6]^{2-}$ are, respectively,

- 1. +3 and +4
- 2. +3 and +5
- 3. +4 and +5
- 4. +4 and +6

26. Among the three types of orbitals p, d, and f,

- 1. both p and f orbitals have centre of symmetry
- 2. both p and d orbitals have centre of symmetry
- 3. only d orbitals have centre of symmetry
- 4. f orbitals alone have centre of symmetry

27. The absorbance of solution having 20% transmittance is


- 1. 0.301
- 2. 0.699
- 3. 1.301
- 4. 1.699

28. The active site of enzyme nitrogenase contains

- 1. Mo
- 2. Mn
- 3. Fe
- 4. Cu

29.	Which one of the following is a free radical:		
	1.	CO	
	2.	CN ⁻	
		NO	
	4.	CS	
30.	Choose	e the 16 e ⁻ complex from the following:	
	1.	Ni(CO) ₄	
		Rh(PPh ₃) ₃ Cl	
	3.	Fe(CO) ₅	
	4.	$(\eta^6-C_6H_6)_2Cr$	
31.	The and	points having metal metal hand is:	
31.	The spe	ecies having metal-metal bond is:	
	1.	$Mn_2(CO)_{10}$	
		$Al_2(CH_3)_6$	
		$V_2(O)_{12}$	
	4.	$Al_2(OPr^i)_{12}$	
32.	Choose	the INCORRECT statement from the following	
		Fluorine has higher electronegativity than chlorine	
		Fluorine molecule (F_2) has lower bond energy than chlorine molecule	
		(Cl ₂) Elyoping has higher electron efficient than ablasing	
		Fluorine has a leason tondency to form action than obloring	
	4.	Fluorine has a lesser tendency to form cation than chlorine	
		9	
33.	The on	ly molecule having bridging oxygen is	
	1.	Phosphorus trioxide	
		Phosphorus pentaoxide	
	3.	Cyclic tetraphosphate	
		Pyrophosphate	
34.	The co	ordination number of phosphorus in $[PMo_{12}O_{40}]^{3-}$ is	
	1.	2	
	2.	4	
	3.	5	
	<i>3</i> . 4.	6	
	-		

- **35.** Using phenolphthalein as the indicator, which of the following titration is possible:
 - 1. acetic acid with pyridine
 - 2. oxalic acid with sodium hydroxide
 - 3. hydrochloric acid with aniline
 - 4. sulphuric acid with aqueous ammonia
- **36.** Which of the following species is ESR-active?
 - 1. $VOSO_4$
 - 2. $K_2Cr_2O_7$
 - 3. $KMnO_4$
 - 4. $[Co(NH_3)_6]Cl_3$
- **37.** Ozone (O₃) absorbs UV radiation in the atmosphere and is decomposed mainly into
 - 1. O_2 , O
 - 2. O^{2-}, O^{2+}
 - 3. $O_2^{2^-}, O^+$
 - 4. atomic oxygen
- **38.** Large derivation from Trouton's rule is observed for systems which are
 - 1. having more ordered structure
 - 2. having more disordered structure
 - 3. having low melting points
 - 4. having low boiling points
- **39.** The concentration of a reactant decreases linearly with time. What is the order of the reaction?

- 1. 1st order
- 2. Fractional order
- 2^{nd} order
- 4. Zero order

40.	The point group symmetry of the molecule <i>cis</i> –ML ₄ X ₂ is		
	1. $C_{4\nu}$		
	$\begin{array}{ccc} C_{4\nu} \\ 2. & D_{4h} \end{array}$		
	C_{2h}		
	$4. \qquad C_{2\nu}$		
41.	The point group symmetries of a square and a rectangle respectively, are		
	1. D_{4h} and D_{2h}		
	2. C_{4h} and C_{2h}		
	3. D_{4h} and C_{2h}		
	4. C_{4h} and D_{2h}		
42.	The number of rotational degrees of freedom of CO ₂ is		
	1. one		
	2. two		
	3. three		
	4. four		
43 .	The magnitude of the nuclear spin angular momentum of a nuclei is $\sqrt{15}/2$ \hbar		
4 3.	units. The value of I is		
	units. The value of 118		
	1. 5/2		
	2. 1/2		
	3. 1		
	4. 3/2		
	3/2		
44.	Identify the molecule whose rotational constant can not be determined by		
	spectroscopic methods.		
	1. CH ₄		
	2. H ₂		
	$3. CO_2$		
	4. HCl		
45.	Which of the following transitions in the electronic spectrum of a homonuclear		
	diatomic molecule is forbidden		
	1. $\sum_{u}^{+} \rightarrow \sum_{e}^{+}$		
	$2. \qquad \sum_{g}^{+} \rightarrow \prod_{u}^{u}$		
	$3. \qquad \sum_{u}^{+} \rightarrow \prod_{g}$		
	$4. \qquad \sum_{g}^{+} \rightarrow \Delta_{u}$		

- 46. The diffraction pattern of a cubic solid has an intense 110 Bragg reflection, but the 100 and 111 Bragg reflections are absent. The structure of the solid is
 - 1. Body-centered cubic
 - 2. Primitive cubic
 - 3. Face-centered cubic
 - 4. Edge-centered cubic
- 47. The logarithmic conductivity of a crystalline solid shows a linear variation with inverse temperature (1/T). The band gap may be obtained from
 - 1. slope of the plot.
 - 2. intercept on the conductivity axis.
 - intercept on the temperature axis. 3.
 - 4. inverse slope
- The molar masses of monodisperse and polydisperse polymers obey respectively 48. the conditions: $(\overline{M}_n = \text{Number average molecular weight and } \overline{M}_w = \text{Weight})$ average molecular weight).

 - 1. $\overline{M}_n > \overline{M}_w$ and $\overline{M}_n < \overline{M}_w$ 2. $\overline{M}_n = \overline{M}_w$ and $\overline{M}_n < \overline{M}_w$ 3. $\overline{M}_n < \overline{M}_w$ and $\overline{M}_n < \overline{M}_w$ 4. $\overline{M}_n = \overline{M}_w$ and $\overline{M}_n = \overline{M}_w$
- Curding from milk, an enzyme-catalysed reaction, is most efficient around **49**.
 - 0 °C and pH ≥ 101.
 - $0 \, ^{\circ}$ C and pH ≤ 4
 - $0 \, ^{\circ}$ C and $4 \leq pH \leq 10$ 3.
 - 25 °C and $4 \le pH \le 10$
- **50.** The spatial part of hydrogen molecular wavefunction in the simplest molecular orbital theory is given by σ_g^2 where σ_g is normalized linear combination of two hydrogen 1s orbitals. Which of the following is true about the above wavefunction?
 - It contains only covalent terms. 1.
 - It includes only a small amount of ionic terms. 2.
 - 3. It contains only ionic terms.
 - 4. It overestimates the ionic terms.

51. A 2p_z orbital of hydrogen atom is an eigenfunction of

- H only. H and L^2 only 2.
- H, L^2 and L_z only 3.
- H, L^2, L_z and L_x

52. By a reversible process, we mean one that always

- takes infinite time for completion 1.
- 2. satisfies ΔS (universe) = 0
- 3. satisfies $\Delta G = 0$.
- 4. gives maximum work

53. A hydrogenic 3p orbital has the following form of the radial wavefunction (α_i = constant):

- 1.
- $r(lpha_1-r)e^{-lpha_2r}$ $r^2e^{-lpha_3r}$ $r(lpha_4-r)(lpha_5-r)e^{-lpha_6r}$ $r^3e^{-lpha_7r}$

The wavefunction $\sin^{-1} x$ is not acceptable because it is **54**.

- 1. not continuous
- 2. not differentiable
- not an eigenfunction of kinetic energy operator 3.
- 4. not a single-valued function

IUPAC name for the compound given below is **55.**

- *E*-5-ethylhept-5-en-2-one 1.
- 2. Z-5-ethylhept-5-en-2-one
- 3. *E*-3-ethylhept-2-en-6-one
- Z-3-ethylhept-2-en-6-one

56. The most suitable reagent for the following transformation is

- 1. NaBH₄
- B_2H_6
- 3. Zn-Hg / HCl
- 4. NH_2NH_2/HCl

57. Acetophenone can be converted to phenol by reaction with

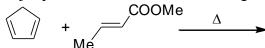
- 1. *m*-CPBA followed by base catalysed hydrolysis
- 2. conc. HNO₃
- 3. iodine and NaOH
- 4. singlet oxygen followed by base catalysed hydrolysis

58. Reaction of phenyl benzoate with an excess of methylmagnesium bromide gives a mixture of

- 1. triphenylmethanol and phenol
- 2. 2-phenylpropan-2-ol and phenol
- 3. acetophenone and toluene
- 4. 2-phenylbenzoic acid and toluene

59. The major product formed in the reaction of 2-methylbut-3-en-2-ol with HBr is

60. Among dimethylcyclobutanes, which one can exhibit optical activity?


- 1. *cis*-1,2-dimethylcyclobutane
- 2. *trans*-1,2-dimethylcyclobutane
- 3. *cis*-1,3-dimethylcyclobutane
- 4. *trans*-1,3-dimethylcyclobutane

61. The monomer of biopolymer DNA is a

- 1. nucleotide
- 2. amino acid
- 3. disaccharide
- 4. fatty acid

- 62. The order of chemical shifts (δ value) in the 1H NMR spectrum of crotonaldehyde is
 - 1. olefinic > CHO > Me
 - 2. CHO > Me > olefinic
 - 3. CHO > olefinic > Me
 - 4. olefinic > Me > CHO
- **63.** Natural sugars and aminoacids are predominantly
 - 1. D-sugars and L-amino acids
 - 2. D-sugars and D-amino acids
 - 3. L-sugars and D-amino acids
 - 4. L-sugars and L-amino acids
- **64.** The product formed in the reaction given below is

65. The major product formed in the reaction given below is

1. Me

ČOOMe

- 2. COOMe
- 3. MeOOC Me
- 4. Me COOMe
- **66.** The conversion of excited singlet state (S_1) of a molecule to triplet state (T_1) is known as
 - 1. fluorescence
 - 2. phosphorescence
 - 3. intersystem crossing
 - 4. internal conversion
- 67. The decreasing order of stability of the free radicals A, B and C is

- 1. A > B > C
- $2. \qquad C > A > B$
- 3. B > A > C
- 4. A > C > B

68. The major product formed in the reaction given below is

- 1. OH
- 2. OH
- 3. N₃
- 4. "N₃
- **69.** The rates of keto-enol tautomerism in the ketones **A-C**, given below, are in the order

- $1. \qquad A > B > C$
- $2. \qquad A > C > B$
- $3. \qquad C > A > B$
- $4. \qquad C > B > A$
- **70.** The reaction given below is an example of

- 1. aldol condensation
- 2. Knoevenagel condensation
- 3. Dieckmann condensation
- 4. acyloin condensation

PART C

- 71. The covalent radii vary gradually in the Periodic Table. From the orders given below for such radii, the correct ones are
 - (a) Ce > Lu, (b) Co > Ti, (c) Sr > Ca, (d) I > Se

1.

3.

4.

(a) and (b) only(a) and (c) only

(a), (c) and (d) only

(b), (c) and (d) only

- 4. 18.3%
- 77. On a 30 cm column, the t_R of **A** and **B** respectively are 16.40 and 17.63 minutes. The t_0 of the column is 1.30 minutes. The peak width at base lines for **A** and **B** are 1.11 and 1.21 minutes respectively. The column resolution R_S is
 - 1. 1.06
 - 2. 1.23
 - 3. 2.12
 - 4. 2.23
- **78**. Which one of the following pairs of electronic configurations of high-spin transition metal ions (3d) in an octahedral field undergoes a substantial Jahn-Teller distortion:
 - d^3 . d^9 1.
 - 2.
 - d^{4}, d^{9} d^{5}, d^{9} 3.
 - d^6 , d^9
- **79**. Which one of the following pairs consists of a good oxidizing and a good reducing agent respectively:
 - 1. Ce(IV), Ln(III)
 - 2. Ln(III), Eu(II)
 - 3. Ce(IV), Eu(II)
 - 4. Ln(III), Ce(III)
- **80**. Which one of the pairs of following statements about reduction of [CoCl(NH₃)₅]²⁺ by Cr(II) is correct:
 - (A). Reactant $[CoCl(NH_3)_5]^{2+}$ has non-labile coordination sphere
 - (B). Reaction proceeds by outer-sphere mechanism
 - (C). Reactant [CoCl(NH₃)₅]²⁺ has labile coordination sphere
 - (D). Reaction proceeds by inner-sphere mechanism
 - 1. (A) and (B)
 - 2. (A) and (D)
 - 3. (C) and (B)
 - 4. (C) and (D)
- **81**. Hemocyanin contains
 - 1. a dinuclear copper core and binds dioxygen in the cuprous state.
 - 2. a dinuclear copper core and binds dioxygen in the cupric state.
 - 3. a mononuclear copper core and binds dioxygen in the cuprous state
 - 4. a mononuclear copper core and binds dioxygen in the cupric state.

82.	The ^{31}P NMR spectrum of $PF_4N(CH_3)_2$ at room temperature and low temperature (173 K) respectively shows (assume that N and H do not couple):		
	1. 2.	triplet and quintet quintet and triplet	
	3. 4.	quintet and triplet of triplets triplet and triplet of triplets	
83.	The number of hyperfine lines in the EPR spectrum of a one electron reduced product of $[Co_3(CO)_9Se]$ (I = 7/2 for Co nucleus) is:		
	1		
	1. 2.	8 15	
	3.	22	
	4.		
84 .	The hi	ighest oxidation state of a metal in the following compounds is:	
	(η^6-C_6)	$H_6)_2Cr$, $Mn(CO)_5Cl$, $Na_2[Fe(CO)_4]$, $K[Mn(CO)_5]$ and $K[Mo(CO)_5Br]$	
	1		
	1. 2.		
	2. 3.	-1	
	3. 4.	-2	
85 .		aximum number of valence electrons of a metal in these complexes are:	
	$Mn_2(C)$	$(CO)_{10}$, $(\eta^5 - C_5H_5)Mo(CO)_3Cl$, $(\eta^5 - C_5H_5)_2Ni$, and $(\eta^5 - C_5H_5)_2TiCl_2$	
	1.	16	
	2.	18	
	3.	20	
	4.	22	
86 .	The n	number of bridging and terminal carbonyls present in Co ₄ (CO) ₁₂ at low	
		rature are respectively:	
	1.	3 and 9	
	2.	4 and 8	
	3. 4.	6 and 6 0 and 12	
	4.	U and 12	
87 .	Olefin	hydrogenation using Wilkinson's catalyst initiates with:	
	1.	olefin addition to Rh(PPh ₃) ₂ Cl	
	2.	olefin addition to Rh(PPh ₃) ₃ Cl	
	3.	a phosphine dissociation from Rh(PPh ₃) ₃ Cl	

- 4. a phosphine addition to Rh(PPh₃)₂Cl
- **88**. Although Fe(III) is a better Lewis acid compared to Zn(II), most hydrolytic enzymes contain Zn(II) at the active site because
 - 1. Fe(III) is a redox active ion.
 - 2. Fe(III) has less abundance compared to Zn(II).
 - 3. Fe(III) generally makes octahedral complexes while Zn(II) makes tetrahedral complexes
 - 4. Zn(II) makes kinetically labile complexes.
- **89**. Considering the two complexes (A) $[Ni(H_2O)_6]^{2+}$ and (B) $[Ni(NH_3)_6]^{2+}$, the right statement is
 - 1. Complex (A) is diamagnetic and complex (B) is paramagnetic
 - 2. Complex (A) is paramagnetic and complex (B) is diamagnetic
 - 3. Both are paramagnetic
 - 4. Both are diamagnetic
- **90**. Unlike d-d transitions, the f-f transitions
 - 1. do not change much with change in ligand
 - 2. change significantly with change in ligand
 - 3. appear at low energies i.e., at the near-IR region
 - 4. appear as broad bands
- 91. The solvent that will enhance electrical conductivity of N_2O_4 considerably is
 - 1. hexane
 - 2. benzene
 - 3. nitromethane
 - 4. carbon tetrachloride
- 92. The major product obtained by the reaction of PCl₅ with NH₃, NH₄Cl and $(NH_4)_2SO_4$ respectively are
 - 1. $(PNCl_2)_n$, $P(NH_2)_4Cl$ and $Cl_3P=NPOCl_2$
 - 2. $P(NH_2)_4Cl$, $(PNCl_2)_n$ and $Cl_3P=NPOCl_2$
 - 3. $Cl_3P=NPOCl_2$, $(PNCl_2)_n$ and $P(NH_2)_4Cl$
 - 4. $(PNCl_2)_n$ only
- **93**. Strongest superacid among the following is a
 - 1. solution of HNO₃ in H₂SO₄
 - 2. solution of HClO₄ in H₂SO₄
 - 3. solution of SbF₅ in HF
 - 4. solution of SbCl₅ in HCl

- **94**. Consider the following statements regarding borazine,
 - A. It is isoelectronic with benzene
 - B. Each nitrogen receives more σ -electron density from neighbouring boron than it gives away as a π -donor
 - C. It does not undergo addition reactions
 - D. Nitrogen retains its basicity and boron its acidity.

The true statements among the above are

- 1. A, C and D
- 2. A, B and D
- 3. A and C only
- 4. B, C, and D
- **95**. Which of the following has linear shape
 - 1. $H_3C-N=C=S$
 - 2. $H_3Si-N=C=S$
 - 3. H₃C-N=C=O
 - 4. H₃C-O-CH₃
- **96.** For a diffusion-controlled bimolecular reaction, the rate constant (k_D) is proportional to $(T = \text{temperature}; \eta = \text{coefficient of viscosity of medium}).$
 - 1. ηT
 - $2. \qquad \frac{1}{\eta T}$
 - 3. $\frac{T}{\sqrt{\eta}}$
 - 4. $\frac{T}{n}$
- **97**. Consider the unimolecular reaction

 $A(g) \rightarrow products$

for which the following remarks were made.

- A. The reaction is second order at low pressure and becomes first order at high pressure.
- B. The reaction is first order at low pressure and becomes second order at high pressure.
- C. The reaction is zero order

Which of these is correct?

1. A and B

- 2. B and C
- 3. Only C
- 4. only A
- A random distribution of errors obeys the Gaussian form $\sqrt{A/\pi} \exp[-Ax^2]$. The **98**. mean and standard deviation of this distribution obeys
 - $\langle x \rangle = 0$ and $\sigma_x = 1/\sqrt{A}$ 1.
 - $\langle x \rangle \neq 0$ and $\sigma_x = 1/\sqrt{A}$
 - <x> = 0 and $\sigma_x = \sqrt{A}$
 - $\langle x \rangle = 0$ and $\sigma_x = A$
- The function sin⁻¹ x is not an acceptable wave function because **99**.
 - it is not differentiable 1.
 - 2. its first derivative is not continuous
 - 3. it does not cover the entire space
 - it is not a single-valued function
- 100. The following is true of $2p_x$, $2p_y$ and $2p_z$ orbitals of a H atom.
 - 1.
 - All are eigen functions of L_z Only $2p_x$ and $2p_z$ orbitals are eigen functions of L_z 2.
 - Only 2p_y orbital is an eigen function of L_z. 3.
 - Only 2p_z orbital is an eigen function of L_z. 4.
- Given two Hermitian operators A and B, we construct the following four 101. additional operators

AB, ABA,
$$i[A,B]$$
, A^2B .

Choose the correct option from below.

- All these 4 operators are Hermitian 1.
- Only 3 of these operators are Hermitian 2.
- 3. Only 2 of these operators are Hermitian
- 4. Only 1 of these operators is Hermitian
- **102**. The first-order correction to energy for the ground state of a particle-in-a-box due to a perturbation λx would be
 - $\lambda L/2$ 1.
 - 2. λL
 - 3. $2\lambda L$
 - 4. 2

103. Characters of a few symmetry operations are given below. Identify the character of the irreducible representation A_{2g}

	E	C_n	C_2	i	$\sigma_{\rm h}$
1	1	1	1	-1	-1
2	1	1	-1	1	1
3	1	-1	-1	1	1
4	1	1	-1	-1	1

The character of the irreducible representation A_1 in $C_{3\nu}$ point group is given **104**. below

Identify one irreducible representation orthogonal to A₁among the following.

	Е	$2C_3$	$3\sigma_{\rm v}$
Γ_1	1	-1	1
Γ_2	2	-1	0
Γ_3	2	0	-1
Γ_4	1	-1	-1

- The energy levels of cyclopropene are $\alpha + 2\beta$, $\alpha \beta$, and $\alpha \beta$. The **105**. delocalization energy in C₃H₃ is
 - 1.
 - 2.
 - 3.
 - 3β
- The rotational constant (B) of H³⁵Cl, H³⁷Cl and D³⁵Cl follow the order **106**.
 - 1.

 - $\begin{array}{l} H^{35}Cl \ > \ D^{35}Cl \ > H^{37}Cl \\ H^{35}Cl \ > \ H^{37}Cl \ > D^{35}Cl \\ D^{35}Cl \ > \ H^{35}Cl \ > H^{37}Cl \\ H^{37}Cl \ > \ H^{35}Cl \ > D^{35}Cl \end{array}$
- **107**. Observe the following statements

- I. Atomic mass of isotopes can be obtained from rotational spectra
- **II.** The separation between two successive rotational spectral lines of gaseons NO is 2B cm⁻¹
- III. The nmr spectrum of a compound gave a singlet at 300 H_z away from TMS using a nmr spectrometer operating at 60 MH_z. Its chemical shif is 3 ppm.

Which of the following is correct?

- 1. I, II and III are correct.
- 2. Only III is correct.
- 3. I and II are correct.
- 4. Only I is correct.
- 108. In a crystal, atom A is at the corners of the unit cell, B is at the centre of the cell and the oxygen atoms are at the face-centred positions. What is the formula per unit cell?
 - 1. A_8BO_6
 - ABO_6
 - A_8BO_3
 - 4. ABO_3
- **109**. On mixing 100 mL of 0.1 M CH₃COOH and 50 mL of 0.1 M NaOH, the pH of the solution will be
 - 1. $pk_a + 0.301$
 - 2. pk_a
 - 3. $pk_a 0.301$
 - 4. $pk_a + 0.477$
- 110. Using the fundamental equation dA = -SdT P dV, the Maxwell relation is
 - 1. $\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial S}\right)_V$
 - 2. $\left(\frac{\partial S}{\partial V}\right)_{P} = \left(\frac{\partial P}{\partial T}\right)_{V}$
 - 3. $\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial P}{\partial S}\right)_{T}$
 - 4. $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$

111.	The relationship between mean ionic activity coefficient for $\text{Ca}_3(\text{PO}_4)_2$ and its ions is given by

1.
$$\gamma_{\pm} = \gamma_{+}^{3} \gamma_{-}^{2}$$

3.
$$v_{\pm}^{5} = v_{\pm}^{3} v_{\pm}^{2}$$

4.
$$\gamma_{\pm}^{5} = \gamma_{+}^{2} \gamma_{-}^{3}$$

Assuming that C-H and C-X bond lengths in **112**. the molar residual entropy at 0 K is

- 0 1.
- 2. Rln2
- 3. Rln3
- 4. Rln6

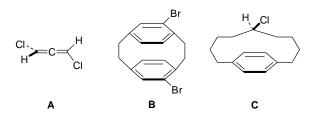
113. The contributions to the molar entropy by translational (tr), rotational (rot), vibrational (vib) and electronic (ele) degrees of freedom is in order

- 1. tr > rot > vib > ele
- 2. rot > vib > tr > ele
- 3. ele > vib > rot > tr
- 4. vib > rot > tr > ele

A binary mixture of A2 and B2 will show negative deviation from Raoult's law 114. when

- 1. A-A and B-B interactions are stronger than A-B
- A-A and B-B interactions are weaker than A-B 2.
- Both A-A and B-B interactions are equal to A-B 3.
- Either A–A or B–B interactions is equal to A–B

In the presence of external magnetic field the transition ${}^3D_1 \rightarrow {}^3P_1$ splits into **115**.


- 2.
- 3. 7
- 9

The term symbol for the ground state of rhodium (Rh, atomic number 45) is ⁴F. **116**. The electronic configuration for this term symbol is

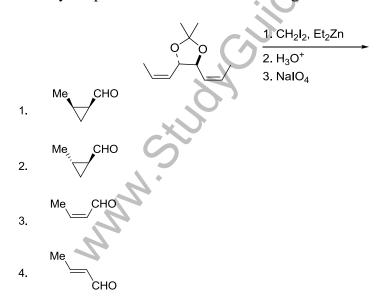
- [Kr] $4d^7 5s^2$ 1.
- [Kr] $4d^8 5s^1$ 2.
- 3.
- [Kr] $4d^9 5s^0$ [Kr] $4d^7 5s^1 5p^1$ 4.

- Ionic equivalent conductance value for Ca²⁺ is 0.0119 (S m² mol⁻¹) and for Cl⁻ is 117. 0.0076 (S m² mol⁻¹). The correct expected molar conductivity at infinite dilution for CaCl₂ is
 - $\begin{array}{c} 0.0195 \; S \; m^2 \; mol^{\text{-}1} \\ 0.0271 \; S \; m^2 \; mol^{\text{-}1} \\ 0.0542 \; S \; m^2 \; mol^{\text{-}1} \end{array}$ 1.
 - 2.
 - 3.
 - 0.01355 S m² mol⁻¹
- Find correct pair for ionic strengths of (a) a 0.02 molal solution of KCl and **118**. a 0.02 molal solution of K₂SO₄.

 - 3.
 - $\begin{array}{l} \text{(a) } 0.020 \text{ mol } \text{Kg}^{\text{-1}} \text{ (b) } 0.020 \text{ mol } \text{Kg}^{\text{-1}} \\ \text{(a) } 0.020 \text{ mol } \text{Kg}^{\text{-1}} \text{ (b) } 0.060 \text{ mol } \text{Kg}^{\text{-1}} \\ \text{(a) } 0.020 \text{ mol } \text{Kg}^{\text{-1}} \text{ (b) } 0.050 \text{ mol } \text{Kg}^{\text{-1}} \\ \text{(a) } 0.020 \text{ mol } \text{Kg}^{\text{-1}} \text{ (b) } 0.030 \text{ mol } \text{Kg}^{\text{-1}} \end{array}$
- 119. The term symbol for the ground state configuration of NO is
 - 1. $^{2}\Pi_{u}$
 - 2.
 - $^{1}\Pi_{\mu}$
- The kinetic chain length (v) is a measure of chain propagation. If the rates of **120**. consumption are denoted by R_c and rates of production by R_p; M and M[•] denote the monomer and the active center, respectively. The correct definition of v is
 - $R_{c}\left(M\right)/\left.R_{p}\left(M^{\bullet}\right)\right.$ 1.
 - $R_p(M^{\bullet}) / R_c(M)$
 - 3.
 - $\begin{array}{c} R_{c} \left(M^{\bullet}\right) / R_{p} \left(M\right) \\ R_{c} \left(M\right) / R_{c} \left(M^{\bullet}\right) \end{array}$
- 121. Amongst the following the correct statement for the compounds A, B, and C, is

- 1. A and B are achiral and C is chiral
- 2. A is chiral and B and C are achiral
- A and B are chiral and C is achiral 3.

122. 4-tert-Butylcyclohexanone on reduction gives two isomeric alcohols which are


- 1. Enantiomers
- 2. Diasteromers
- 3. Rotamers
- 4. Homomers

123. For the following compounds **A** and **B** the correct statement is

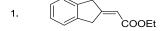
- 1. **A** is aromatic and **B** is antiaromatic
- 2. A is antiaromatic and B is non-aromatic
- 3. **A** and **B** are both aromatic
- 4. **A** and **B** are both non-aromatic

124. Identify the product formed in the following transformations

125. Identify the product formed in the following sequence of reactions

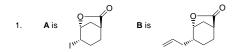
126. Identify the products **A** and **B** in the following reaction sequence

127. Match the following:


- A. Conversion of 1,7-octadiene to cyclohexene
- B. Conversion of bromobenzene to ethyl cinnamate
- C. Conversion of 1-hexene to 2-hexanone

- i) Wacker Oxidation
- ii) McMurry Coupling
- iii) Heck reaction
- iv) Olefin Metathesis

- 1, A: iv; B: ii; C: iii
- 2. A: ii; B: iv; C: i
- 3. A: iv; B: iii; C: i
- 4. A: i; B: iii; C: iv
- **128.** Reagents that can be used in the following conversion are


- 1. i) Ph₃P=CH₂, ii) HCN, iii) H₃O⁺
- 2. i) HS(CH₂)₂SH, ii) n-BuLi, iii) BrCH₂COOH
- 3. i) EtMgI, ii) KMnO₄
- 4. i) Ph₃P, CBr₄, ii) n-BuLi, iii) CO₂
- **129.** The major product formed in the following reaction is

- 1.
- 2. OH
- 3. OH
- 4.
- **130.** In the following reaction, the structure of the major product is

131. For the following reaction, the structure of the major product is

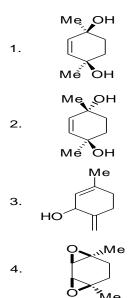
132. Identify the products **A** and **B** in the following reaction sequence.

133. Major product formed in the following reaction is

- 1. MeO CON
- TMSO COMe 2.
- TMSO_NH₂
- 4. TMSO OI
- 134. In the following reaction sequence the structure of the major products \mathbf{X} and \mathbf{Y} are

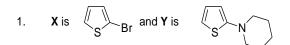
135. Product of Sharpless kinetic resolution of the following alcohol with (-)-diethyl tartrate is

136. Select the product of the reaction of (Z)-(2-methoxyvinyl)benzene with dichloroacetyl chloride in presence of triethyl amine.


137. Identify the product formed in the following reaction

2. h

138. The compound formed in the following reaction sequence is


139. Cholestanol on oxidation with chromium trioxide in acetic acid/pyridine gives a dicarboxylic acid, which on pyrolysis in the presence of a catalytic amount of barium hydroxide gives compound **A** as the major product. The structure of **A** is

140. Photolysis of 1,4-dimethyl-1,3-cyclohexadiene in presence of excess oxygen and catalytic amount of Rose Bengal followed by reduction with H_2/Pt provides

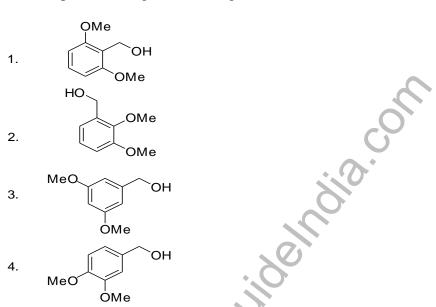
141. In the following reaction sequence, the correct structures of the major products ${\bf X}$ and ${\bf Y}$ are

142. Structure of the X and Y in the reaction sequence of thiophene given below are

4.
$$\mathbf{X}$$
 is \mathbf{S} and \mathbf{Y} is \mathbf{S}

143. Identify the product of hydrogenation (H₂, Pd/C) of the protected amino acid given below

4.
$$H_2N$$
 COOH


144. In the broad band decoupled ¹³C NMR spectrum, the number of signals appear for (a) catechol, (b) resorcinol and (c) hydroquinone, respectively, are

- 1. six, four and two
- 2. six, six and four
- 3. three, four and four
- 4. three, four and two

145. In the proton NMR spectrum, an organic compound exhibited the following spectral data

 δ 7.2 (1H, dd, J = 8 and 1.5 Hz), 6.8 (1H, d, J = 1.5 Hz), 6.7 (1H, d, J = 8 Hz), 4.9 (2H, s), 3.9 (3H, s), 3.85 (3H, s), 3.5 (1H, br s, exchangeable with D₂O)

The compound among the choices given below is

